Superconductor Hoverboard Science fair project

We can easily build a true hoverboard with superconductors.



Superconductors are a perfect example for a Quantum Physics that is macroscopic, large and accessible to play with. 

Superconductivity is created by having discrete energy levels AND by having a large energy gap between the lowest energy state and higher available states. You can read more about this here.

Besides being perfect electrical conductors, superconductors exhibit the strangest magnetic properties: 

Meissner effect – diamagnetic expulsion of external magnetic fields. The superconductor expels magnetic fields by becoming an opposite magnet.

Flux pinning or Quantum Locking – the ability to lock magnetic fields. The locking traps the superconductor in mid air, allowing it to levitate and suspend in a surrounding magnetic field.

The combination of both allows us to create frictionless, levitating motion and a true hoverboard experience.

Hoverboard science project  


  • (DIY maglev kit) Quantum Levitator
  • (DIY maglev kit) Magnets, 10x10x2 mm
  • (DIY maglev kit) Track spacers
  • (DIY maglev kit) Plastic tongs
  • Steel sheet


Quantum Locking 

Place magnets in 2×2, 3×3 and 4×4 matrix on the still sheet. Position the magnets so that they attract each other side-by-side. In this orientation two adjacent magnets point to different direction.

Magnets arrangment
Locking of the superconductor above 2×2 magnets

Explore the locking of the superconductor due to flux pinning. Try to visualize the magnetic field lines.

Q: Why is the superconductor locked stable in all directions?

Hoverboard, frictionless motion

Build a straight track by placing the magnets on the steel sheet such that adjacent magnets, side-by-side, attract each other (opposite orientations) and magnets along the track repel each other.
Try to push magnets along the track as close to each other as possible. 

Cool the levitator and place it on the track.

Observe – The Superconductor is locked on the track AND can move freely along the straight line. 

Repeat this track shape with a spacer between the two rows. The magnets across the spacer should attract each other which will help keeping the spacer in place. 

Cool the levitator and place it on the track. Explore the frictionless motion.

Observe and think:

  • Can you tell the difference in the levitation between the two options? 
  • Draw the field lines on both cases and explain the different behaviors due to the magnetic field. 

 Enjoy !


The scientific world is in turmoil. Room temperature superconductivity has been discovered.  Or so it seems.  A group of scientists from South Korea (Sukbae Lee, Jihoon Kim, Hyun-Tak Kim, Sungyeon Im, SooMin An, and Keun Ho Auh) published two pre-print (not peer reviewed...

Are you tired of the same old baking soda volcanoes and potato batteries at science fairs?   If you're looking to stand out from the crowd and impress the judges, it's time to get creative and think outside the box!...

Why do we need levitating trains? In order to move any object we need to invest energy and convert it to kinetic energy. Any object resists changes to its velocity depending on its mass. Heavier objects will require stronger forces...

latest posts