### Article

## Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box

We discuss the structure and geometrical characteristics of coherent vortices appearing as a result of the inverse cascade in two-dimensional turbulence in a finite box.We demonstrate that the universal velocity profile, established by J. Laurie et al. [Phys. Rev. Lett. 113, 254503 (2014)], corresponds to the passive regime of flow fluctuations.We find the vortex core radius and the vortex size, and we argue that the amount of vortices generated in the box depends on the system parameters

We analyze velocity fluctuations inside coherent vortices generated as a result of the inverse cascade in the two-dimensional ($2d$) turbulence in a finite box. As we demonstrated in \citep{16KL}, the universal velocity profile, established in \citep{14LBFKL}, corresponds to the passive regime of the flow fluctuations. The property enables one to calculate correlation functions of the velocity fluctuations in the universal region. We present the results of the calculations that demonstrate a non-trivial scaling of the structure function. In addition the calculations reveal strong anisotropy of the structure function.

An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate-a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.